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Digital Data Explosion in Human Society
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Challenge of Big Data Management and Analytics (1)

4 Existing DB technology is not prepared for the huge volume

Until 2007, Facebook had a 15TB data warehouse by a big-DBMS-vendor
Now, ~70TB compressed data added into Facebook data warehouse every
day (4x total capacity of its data warehouse in 2007)

Commercial parallel DBs rarely have 100+ nodes

Yahoo!’s Hadoop cluster has 4000+ nodes; Facebook’s data warehouse has
2750+ nodes

Typical science and medical research examples:
— Large Hadron Collider at CERIN generates over 15 PB of data per year
— Pathology Analytical Imaging Standards databases at Emory reaches 7TB, going to PB
— LANL Turbulence Simulation: processing the amount of data at PB level.



Challenge of Big Data Management and Analytics (2)

U Big data is about all kinds of data

* Online services (social networks, retailers ...) focus on big data of
online and off-line click-stream for deep analytics

* Medical image analytics are crucial to both biomedical research
and clinical diagnosis

d Complex analytics to gain deep insights from big data
* Data mining
* Pattern recognition
* Data fusion and integration
* Time series analysis

* Goal: gain deep insights and new knowledge



Challenge of Big Data Management and Analytics (3-4)

[ Conventional database business model is not affordable
* Expensive software license
* High maintenance fees even for open source DBs
* Store and manage data in a system at least $10,000/TB"
* In contrast, Hadoop-like systems only cost $1,500/TB™

1 Conventional database processing model is “scale-up” based

* Performance improvement relies on CPU/memory/storage/network
updates 1n a dedicated site (BSP model, CACM, 1990)

* Big data processing model is “scale-out” based (DOT model, SOCC’11):

MapReduce programming model becomes an

effective data processing engine for big data analytics



Why MapReduce?

A simple but effective programming model designed to process
huge volumes of data concurrently

1 Two unique properties
* Minimum dependency among tasks (almost sharing nothing)

* Simple task operations in each node (low cost machines are sufficient)

d Two strong merits for big data anaytics
* Scalability (Amadal’s Law): increase throughput by increasing # of nodes

* Fault-tolerance (quick and low cost recovery of the failures of tasks)

d Hadoop is the most widely used implementation of MapReduce

* in hundreds of society-dependent corporations/organizations for big data
analytics: AOL, Baidu, EBay, Facebook, IBM, NY Times, Yahoo! ....



MapReduce Overview

] The basic framework comes from functional programming:
simple key/value pairs forms a chain of MR execution

Q Map: (k1, v1) > (K2, v2)
O Reduce: (k2, v2) 2 (k3, v3)

1 Shuffle: Partition Key (It could be the same as k2, or not)

* Partition Key: to determine how a key/value pair in the map output
be transtferred to a reduce task



MR(Hadoop) Job Execution Insights

Map Tasks MR program (job) The execution of

@ Reduce Tasks o a MR job involves
gosnttéol éevel work, e.g.

job scheduling and task
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Data is stored in a I 1: Job submission
Distributed File System
(e.g. Hadoop Distributed

File System

NS Master node
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MR(Hadoop) Job Execution Insights

Map Tasks MR program The execution of
@ Reduce Tasks o a MR job involves
6 steps

I 1: Job submission I

Map output
Master node
Worker nod Worker nodes
7—

Map output will be shuffled to

different reduce tasks based on
I 4: Shuffle phase I Partition Keys (PKs) (usually
Map output keys) 9

3: Map phase
Concurrent tasks




MR(Hadoop) Job Execution Insights

Map Tasks MR program The execution of

@ Reduce Tasks o a MR job involves
6 steps

: | 1: Job submission |

6: Output will be stored back
g Master node to Distributed File System
Worker nodes

Reduce output
5: Reduce phase
Concurrent tasks .

Worker nod

3: Map phase

I 4: Shuffle phase I
Concurrent tasks




MRSHadooE! !ob Execution Insights

' Map Tasks MR program The execution of
@ Reduce Tasks E a MR job involves

. — 6 steps
- I 1: Job submission I

6: Output will be stored back
Master node to Distributed File System
. Worker nodes

X
<

A MapReduce (MR) job is highly resource-consuming:
1: Input data scan in the Map phase => local or remote I/Os

2: Store intermediate results of Map output => local I/Os

3: Transfer data across in the Shuffle phase => network costs
4: Store final results of this MR job => local I/Os + network
costs (replicate data)



Two Critical Challenges in Production Systems

d Background: Standard Relational Databases have been moved to

MapReduce Environment, such as Hive and Pig by Facebook and
Yahoo!

J Challenge 1: How to initially store big data in distributed systems

* Objective: to minimize network and storage costs for massive accesses

J Challenge 2: How to automatically convert relational database
queries into MapReduce jobs

* Objectives: to minimize network and storage costs for MR job execution

J Addressing these two Challenges, we aim to achieve
* High performance of big data analytics
* High productivity of big data analytics



Challenge 1: Fast and Storage-efficient Data Placement

d Data loading (L)

* the overhead of writing data to distributed files ystem and local disks

d Query processing (P)
* local storage bandwidths of query processing

* the amount of network transfers

1 Storage space utilization (S)
* Data compression ratio

* The convenience of applying efficient compression algorithms

 Adaptivity to dynamic workload patterns (W)

* Additional overhead on certain queries

»Obijective: to design and implement a data placement structure

meeting these requirements in MapReduce-based data warehouses



Initial Stores of Big Data in Distributed Environment

HDFS Blocks NameNode

Store Block 1
Store Block 2

Store Block 3 %\

DataNode 1 DataNode 2 DataNode 3

d HDFS (Hadoop Distributed File System) blocks are distributed

 Users have a limited ability to specify customized data placement policy

* e.g. to specify which blocks should be co-located

d Minimizing I/O costs in local disks and intra network communication



° ® L
MR programming is not that “simple”’!
public static class Reduce extends Reducer<IntWritable,Text, Writable, Text> {
private Text result = new Text();

public void reduce(IntWritable key, Iterable<Text> values,
package tpch; Context context
import java.io.IOException; ) throws IOException, InterruptedException {
import java.util.ArrayList;
import org.apache.hadoop.conf.Configuration; double sumQuantity = 0.0;

import a he . had f.Configqured IntWritable newKe new IntWritable();

import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.util.Tool;

= 1IeSplit)context.getlnputsp
(inputFile.compareTo ("lineitem.tbl") == 0) {
isLineitem = true;

Do you miss some thing like ...

“SELECT * FROM Book WHERE price > 100.00”?

1on
int res = ToolRunner.run(new Configuration(), new Q18Jobl (), args);
System.exit (res);




Challenge 2: High Quality MapReduce in Automation

A job description in SQL-like declarative language

A interface between users

Write MR and MR programs (jobs)

programs (jobs)

Workers

Hadoop Distributed File System (HDEFES) »



Challenge 2: High Quality MapReduce in Automation

A job description in SQL-like declarative language

A interface between users

. SQL-to-MapReduce
Write MR Q p and MR programs (jobs)

programs (jobs) Translator

; A data warehousing % A high-level programming

system (Facebook) ® 1 environment (Yahoo!)

Improve productivity from hand-coding MapReduce programs
* 95%+ Hadoop jobs in Facebook are generated by Hive

* 75%+ Hadoop jobs in Yahoo! are invoked by Pig*



Outline

J RCFile: a fast and space-efficient placement structure

* Re-examination of existing structures
e A Mathematical model as basis of RCFile

* Experiment results

J Ysmart: a high efficient query-to-MapReduce translator

* Correlations-aware is the key
* Fundamental Rules in the translation process

* Experiment results
d Impact of RCFile and Ysmart in production systems

(] Conclusion



Row-Store: Merits/Limits with MapReduce

Table
A B C D HDFS Blocks
101 (201 |301 (401 Store Block 1
102 |202 |302 (402 Store Block 2
103 |203 |303 (403 Store Block 3
104 |204 |304 (404

205

»Data loading is fast (no additional processing);

» All columns of a data row are located in the same HDFS block

» Not all columns are used (unnecessary storage bandwidth)
» Compression of different types may add additional overhead



Column-Store: Merits/Limits with MapReduce

Table

B

C

101

201

301

401

102

202

302

402

103

203

303

403

104

204

304

404

105

205
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405

HDFS Blocks
Store Block 1
Store Block 2

Store Block 3
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Column-Store: Merits/Limits with MapReduce

Column group 1

A [Column groug HDFS Blocks
101 Column group 3 Store Block 1
102 201 C D Store Block 2
3 | 1202 | [301 [401 Store Block 3
104 203 302 |402
105 204 303 |403

205 304 |404

»Unnecessary I/O costs can be avoided:

Only needed columns are loaded, and easy compression
» Additional network transfers for column grouping




Optimization of Data Placement Structure

 Consider four processing requirements comprehensively

d The optimization problem in systems design becomes:

* In a environment of dynamic workload (W) and with a suitable
data compression algorithm (S) to improve the utilization of
data storage,

find a data placement structure (DPS) that minimizes the

processing time of a basic operation (OP) on a table (T) with #
columns

d Two basic operations
* Write: the essential operation of data loading (L)

* Read: the essential operation of query processing (P)



Finding Optimal Data Placement Structure

E(read | DPS) =

29 £, j,n)(BS L x t(DPS) + MDPS.i, j.n)x—>—x 1)
=1 j=1 n

local p netwotk
Row-Store Column-store Ideal
Read efficiency 1 i/n(optimal) i/n(optimal)
Communication s 0 (optimal)
0 (optimal) | (0%=< £<100% P
overhead

Can we find a Data Placement Structure with both optimal rezd

efficiency and communication overhead ?




Goals of RCFile

d Eliminate unnecessary I/O costs like Column-store

* Only read needed columns from disks
 Eliminate network costs in row construction like Row-store
 Keep the fast data loading speed of Row-store

1 Can apply efficient data compression algorithms
conveniently like Column-store

J Eliminate all the limits of Row-store and Column-store



RCPFile: Partitioning a Table into Row Groups

A HDFS block consists of one

Table or multiple row groups
A |B |c |D HDFS Blocks
.Row|Group ... Store Block 1
101 |201 |301 |401 Store Block 2

102 |202 |302 |402 Store Block 3
103 203 |303 |403 Store Block 4
104 |204 |304 |404
105 205 |305 |405

25



RCPFile: Distributed Row-Group Data among Nodes

For example, each HDFS block has three row groups

HDFS Block
> Blocks NameNode
Store Block 1
Store Block 2
Store Block 3 |
P
$
l
Row Group 1-3 Row Group 4-6 Row Group 7-9

DataNode 1 DataNode 2 DataNode 3



Inside a Row Group

Metadata

101 |201 |301 |[401

102 | 202 |[302 |402

103 203 |303 |403

104 |204 |304 |404

105 |205 |305 |405
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Inside a Row Group

Metadata

101 |201 |301 |[401

102 | 202 |[302 |402

103 203 |303 |403

104 |204 |304 |404

105 |205 |305 |405
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RCFile: Inside each Row Group

101 ompressed Co . .:
102 0 0 0 04
103 | (291 S—
202
104 301 () () () ()4
203
105 200 E——
204 401
() ( ( )4
205 | 1393 | |402 — '
304 | (203
410 410 410 404
305 | 1404
405




Benefits of RCFile

1 Eliminate unnecessary I/O costs
* Ina row group, table is partitioned by columns

* Only read needed columns from disks

1 Eliminate network costs in row construction

 All columns of a row are located in the same HDFS block

d Comparable data loading speed to Row-Store

* Only adding a vertical-partitioning operation in the data loading
procedure of Row-Store

d Can apply efficient data compression algorithms
conveniently

* Can use compression schemes used in Column-store



Expected Time of a Read Operation

E(read | DPS) =
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Expected Time of a Read Operation

E(read | DPS) =
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Facebook Data Analytics Workloads Managed By RCFile

4 Reporting
* E.g. daily/weekly aggregations of impression/click counts

1 Ad hoc analysis

* E.g. geographical distributions and activities of users in the world

1 Machine learning

* E.g online advertizing optimization and effectiveness studies
1 Many other data analysis tasks on user behavior and patterns
 User workloads and related analysis cannot be published

] RCFile evaluation with public available workloads with excellent
performance (ICDE’11)



RCPFile in Facebook

The interface to )
500+ million users

Capacity:

RCFile Data 21PB il’l May, 2010
30PB+ today
g cos Warehouse
O O O )

o)
Picture source: Visualizing Friendships, http://www.facebook.com/notes/facebook-engineering/visualizing-friendships/469716398919




Summary of RCFile

d Data placement structure lays a foundation for MapReduce-based big
data analytics

d Our optimization model shows RCFile meets all basic requirements

d RCFile: an operational system for daily tasks of big data analytics
* A part of Hive, a data warehouse infrastructure on top of Hadoop.

* A default option for Facebook data warehouse

* Has been integrated into Apache Pig since version 0.7.0 (expressing data analytics
tasks and producing MapReduce programs)

* Customized RCFile systems for special applications

 Refining RCFile and optimization model, making RCFile as a standard
data placement structure for big data analytics



Outline

J RCEile-afastand space-efficient placementstrueture
. T L ot
. A Mad ] Ll as basicof RCE
* Hxpertmentresults
J Ysmart: a high efficient query-to-MapReduce translator
* Correlations-aware is the key

* Fundamental Rules in the translation process

* Experiment results
d Impact of RCFile and Ysmart in production systems

(1 Conclusion




Translating SQL-like Queries to MapReduce
Jobs: Existing Approach

[ “Sentence by sentence” translation

* |[C. Olston et al. SIGMOD 2008], [A. Gates et al., VLDB 2009] and [A.
Thusoo et al., ICDE2010]

* Implementation: Hive and Pig

U Three steps
* Identify major sentences with operations that shuffle the data
— Such as: Join, Group by and Order by

* For every operation in the major sentence that shuffles the data, a
corresponding MR job is generated

— e.g. a join op. => a join MR job
* Add other operations, such as selection and projection, into
corresponding MR jobs

Existing SQL-to-MapReduce translators give unacceptable

performance.



An Example: TPC-H Q21

d One of the most complex and time-consuming queries in the
TPC-H benchmark for data warehousing performance
JOptimized MR Jobs vs. Hive in a Facebook production cluster

¥ Optimized MR Jobs ¥ Hive
160

140

p—
(\®)
(e

(B8]

~J
i

100

=N
e

NN
o

Execution time (min)
®
S

What’s wrong?



The Execution Plan of TPC-H Q21

The only difference: SORT
Hive handle this sub-tree in a
different way with the
optimized MR jobs

It’s the dominat\gd part on time

(~90% of executib\n time)

Left-outer-

Join Join3

supplier nation

Join1 AGG1 AGG2

" 4 M A\ A\
| lineitem orders lineitem lineitem [ 39



C O AJOIN MR Job

However, inter-job correlations exist.
Let’s look at the Partition Key /\ An AGG MR Job

Key: 1_orderkey

A Table

A Composite MR Job
~

Key: 1_orderkey ~

~

Key: 1_orderkey

Key: 1_orderkey Key: 1_orderkey

lineitem lineitem lineitem

orders

1 to J5 all use the same partition key ‘1_orderkey’

What’s wrong with existing SQL-to-MR translators?

Existing translators are correlation-unaware
1. Ignore common data input
2. Ignore common data transition




Our Approaches and Critical Challenges

Correlation-aware

SLOJESGEVIRIER I BT MR Jobs for best

SQL-like queries performance

/

1: Correlation possibilities
and detection

Primitive Identify
MR Jobs Correlations

A
V

3: Implement high-performance

2: Rules for automatically and low-overhead MR jobs
exploiting correlations



Query Optimization Rules for

Automaticallz EXEIOiting Correlations

d Exploiting both Input Correlation and Transit Correlation

 Exploiting the Job Flow Correlation associated with
Aggregation jobs

d Exploiting the Job Flow Correlation associated with JOIN
jobs and their Transit Correlated parents jobs

d Exploiting the Job Flow Correlation associated with JOIN
jobs



Expl: Four Cases of TPC-H Q21

1: Sentence-to-Sentence Translation 2: InputCorrelation+TransitCorrelation
* 5 MR jobs *3N

Left-
outer-Join

Left-outer-
Join

lineitem orders lineitem lineitem
3: InputCorrelation+TransitCorrelation+
JobFlowCorrelation _»” 4 Hand-coding (similar with Case 3)
*1 MR job ,¢’ * In reduce function, we optimize code
 a

according query semantic

lineitem orders

lineitem 43




Breakdowns of Execution Time (sec)
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Job3 Reduce
ob3 Ma
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! Job2 Map
‘\ ¥ Job1 Reduce
1 \ ¥ Jobl Map
\
‘| \\ Only 17% difference
1 \“
WA \
\\
-
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No Correlation

Input Correlation
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Input Correlation Hand-Coding

Transit Correlation

JobFlow Correlation




Exp2: Clickstream Analysis

A typical query 1n production clickstream analysis: “what is the
average number of pages a user visits between a page in category
Xand a page in category Y '?”

In YSmart JOIN1, AGG1, AGG2, JOIN2 and
AGG3 are executed in a single MR job

800

in)
\]
=
S

600
500
400 -
300
200

Clicks

Execution time (m

[N
S
o)

(o)
|

Clicks Clicks

YSmart Hive Pig 45




YSmart in the Hadoop Ecosystem

See patch
HIVE-2206 at
apache.org

Hadoop Distributed File System (HDEFES)




Summary of YSmary

d YSmart is a correlation-aware SQL-to-MapReduce translator
d Ysmart can outperform Hive by 4.8x, and Pig by 8.4x
d YSmart is being integrated into Hive

(] The individual version of YSmart will be released soon



(AN

Translate SQL-like queries to
MapReduce jobs

A Hadoop-powered
Data Warehousing
System

RCPFile Data

Web servers
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Conclusion

d We have contributed two important system components:
RCFile and Ysmart in the critical path of Big Data analytics
Ecosystem.

1 The ecosystem of Hadoop-based big data analytics is created:
Hive and Pig, will soon merge into an unified system

 RCFile and Ysmart are in the critical path in such a new
Ecosystem.

Thank You!



